Epigenetic Regulation by microRNAs in Hyperhomocysteinemia-Accelerated Atherosclerosis

Author:

Griñán Raquel,Escolà-Gil Joan CarlesORCID,Julve JosepORCID,Benítez SoniaORCID,Rotllan NoemíORCID

Abstract

Increased serum levels of homocysteine (Hcy) is a risk factor for cardiovascular disease and is specifically linked to various diseases of the vasculature such as atherosclerosis. However, the precise mechanisms by which Hcy contributes to this condition remain elusive. During the development of atherosclerosis, epigenetic modifications influence gene expression. As such, epigenetic modifications are an adaptive response to endogenous and exogenous factors that lead to altered gene expression by methylation and acetylation reactions of different substrates and the action of noncoding RNA including microRNAs (miRNAs). Epigenetic remodeling modulates cell biology in both physiological and physiopathological conditions. DNA and histone modification have been identified to have a crucial role in the progression of atherosclerosis. However, the potential role of miRNAs in hyperHcy (HHcy)-related atherosclerosis disease remains poorly explored and might be essential as well. There is no review available yet summarizing the contribution of miRNAs to hyperhomocystein-mediated atherogenicity or their potential as therapeutic targets even though their important role has been described in numerous studies. Specifically, downregulation of miR-143 or miR-125b has been shown to regulate VSCMs proliferation in vitro. In preclinical studies, downregulation of miR-92 or miR195-3p has been shown to increase the accumulation of cholesterol in foam cells and increase macrophage inflammation and atherosclerotic plaque formation, respectively. Another preclinical study found that there is a reciprocal regulation between miR-148a/152 and DNMT1 in Hcy-accelerated atherosclerosis. Interestingly, a couple of studies have shown that miR-143 or miR-217 may be used as potential biomarkers in patients with HHcy that may develop atherosclerosis. Moreover, the current review will also update current knowledge on miRNA-based therapies, their challenges, and approaches to deal with Hcy-induced atherosclerosis.

Funder

Ministerio de Ciencia, Innovación y Universidades

Agencia Estatal de Investigación within the Subprograma Ramón y Cajal

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3