Phenol and Polyaromatic Hydrocarbons Are Stronger Drivers Than Host Plant Species in Shaping the Arbuscular Mycorrhizal Fungal Component of the Mycorrhizosphere

Author:

Malicka MonikaORCID,Magurno FrancoORCID,Piotrowska-Seget ZofiaORCID

Abstract

Changes in soil microbial communities in response to hydrocarbon pollution are critical indicators of disturbed ecosystem conditions. A core component of these communities that is functionally adjusted to the life-history traits of the host and environmental factors consists of arbuscular mycorrhizal fungi (AMF). AMF communities associated with Poa trivialis and Phragmites australis growing at a phenol and polynuclear aromatic hydrocarbon (PAH)-contaminated site and at an uncontaminated site were compared based on LSU rDNA sequencing. Dissimilarities in species composition and community structures indicated soil pollution as the main factor negatively affecting the AMF diversity. The AMF communities at the contaminated site were dominated by fungal generalists (Rhizophagus, Funneliformis, Claroideoglomus, Paraglomus) with wide ecological tolerance. At the control site, the AMF communities were characterized by higher taxonomic and functional diversity than those exposed to the contamination. The host plant identity was the main driver distinguishing the two AMF metacommunities. The AMF communities at the uncontaminated site were represented by Polonospora, Paraglomus, Oehlia, Nanoglomus, Rhizoglomus, Dominikia, and Microdominikia. Polonosporaceae and Paraglomeraceae were particularly dominant in the Ph. australis mycorrhizosphere. The high abundance of early diverging AMF could be due to the use of primers able to detect lineages such as Paraglomeracae that have not been recognized by previously used 18S rDNA primers.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3