Research into the Bioengineering of a Novel α-Conotoxin from the Milked Venom of Conus obscurus

Author:

Wiere Sean,Sugai Christopher,Espiritu Michael J.,Aurelio Vincent P.,Reyes Chloe D.,Yuzon Nicole,Whittal Randy M.,Tytgat Jan,Peigneur SteveORCID,Bingham Jon-PaulORCID

Abstract

The marine cone snail produces one of the fastest prey strikes in the animal kingdom. It injects highly efficacious venom, often causing prey paralysis and death within seconds. Each snail has hundreds of conotoxins, which serve as a source for discovering and utilizing novel analgesic peptide therapeutics. In this study, we discovered, isolated, and synthesized a novel α3/5-conotoxins derived from the milked venom of Conus obscurus (α-conotoxin OI) and identified the presence of α-conotoxin SI-like sequence previously found in the venom of Conus striatus. Five synthetic analogs of the native α-conotoxin OI were generated. These analogs incorporated single residue or double residue mutations. Three synthetic post-translational modifications (PTMs) were synthetically incorporated into these analogs: N-terminal truncation, proline hydroxylation, and tryptophan bromination. The native α-conotoxin OI demonstrated nanomolar potency in Poecilia reticulata and Homosapiens muscle-type nicotinic acetylcholine receptor (nAChR) isoforms. Moreover, the synthetic α-[P9K] conotoxin OI displayed enhanced potency in both bioassays, ranging from a 2.85 (LD50) to 18.4 (IC50) fold increase in comparative bioactivity. The successful incorporation of PTMs, with retention of both potency and nAChR isoform selectivity, ultimately pushes new boundaries of peptide bioengineering and the generation of novel α-conotoxin-like sequences.

Funder

Department of Agriculture

F.W.O Vlaanderen

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3