Hybrid Coordination Networks for Removal of Pollutants from Wastewater

Author:

Marganovici Marko,Maranescu Bianca,Visa AureliaORCID,Lupa LaviniaORCID,Hulka IosifORCID,Chiriac VladORCID,Ilia GheorgheORCID

Abstract

The adsorption properties of two coordination polymers, resulting from the reaction of divalent metal (Ca2+ or Co2+) salts with (2-carboxyethyl)(phenyl)phosphinic acid, are presented in this paper. The structural and textural characterization before and after adsorption experiments is presented. The adsorbent materials were prepared using the hydrothermal procedure. The compound Ca[O2P(CH2CH2COOH)(C6H5)]2 (CaCEPPA) has a layered topology, with the phenyl groups oriented into the interlayer space and crystallizes in the monoclinic system. Compound Co2[(O2P(CH2CH2COO)(C6H5)(H2O)]2·2H2O (CoCEPPA) has a 1D structure composed of zig-zag chains. The adsorption performances of CaCEPPA and CoCEPPA materials were tested in the removal of cadmium and lead from aqueous solutions. The optimum pH of ions adsorption was found to be five for both adsorbent materials. Pseudo-first and second-order kinetic models were used for fitting kinetic experimental data, and Langmuir and Freundlich isotherms were used for modeling the equilibrium experimental data. The pseudo-second-order kinetic model and Langmuir isotherm best described the adsorption of Cd and Pb ions onto the studied materials, judging from the results of the error function (correlation coefficient, sum of square error, chi-square test, and average relative error) analysis. The studied materials present a higher affinity for Cd ions compared with the adsorption capacity developed for the removal of Pb ions from aqueous solutions. CoCEPPA showed the highest adsorption performance in the removal process of metal ions from aqueous solutions compared with CaCEPPA (qm = 54.9 mg Cd2+/g of CoCEPPA, qm = 36.5 mg Cd2+/g of CaCEPPA).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meet the Associate Editor;Current Green Chemistry;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3