Hepatobiliary Thyroid Hormone Deficiency Impacts Bile Acid Hydrophilicity and Aquaporins in Cholestatic C57BL/6J Mice

Author:

Kube IrinaORCID,Kowalczyk Manuela,Hofmann UteORCID,Ghallab AhmedORCID,Hengstler Jan Georg,Führer Dagmar,Zwanziger Denise

Abstract

Women are more prone to develop either hypothyroidism or cholesterol gallstones than men. However, a male predominance in cholesterol gallstones under hypothyroidism was reported. Recently, a novel pathogenic link between thyroid hormone (TH) deficiency and cholesterol gallstones has been described in male mice. Here, we investigate if TH deficiency impacts cholesterol gallstone formation in females by the same mechanism. Three-month-old C57BL/6J mice were randomly divided into a control, a TH deficient, a lithogenic, and a lithogenic + TH deficient group and diet-treated for two, four, and six weeks. Gallstone prevalence, liver function tests, bile composition, hepatic gene expression, and gallbladder aquaporin expression and localization were investigated. Cholesterol gallstones were observed in lithogenic + TH deficient but not lithogenic only female mice. Diminished hydrophilicity of primary bile acids due to decreased gene expression of hepatic detoxification phase II enzymes was observed. A sex-specific expression and localization of hepatobiliary aquaporins involved in transcellular water and glycerol permeability was observed under TH deficient and lithogenic conditions. TH deficiency promotes cholesterol gallstone formation in female C57BL/6J mice by the same mechanism as observed in males. However, cholesterol gallstone prevalence was lower in female than male C57BL/6J mice. Interestingly, the sex-specific expression and localization of hepatobiliary aquaporins could protect female C57BL/6J mice to cholestasis and could reduce biliary water transport in male C57BL/6J mice possibly contributing to the sex-dependent cholesterol gallstone prevalence under TH deficiency.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3