Enhanced Succinate Oxidation with Mitochondrial Complex II Reactive Oxygen Species Generation in Human Prostate Cancer

Author:

Zhang AijunORCID,Gupte Anisha A.,Chatterjee Somik,Li Shumin,Ayala Alberto G.,Miles Brian J.,Hamilton Dale J.ORCID

Abstract

The transformation of prostatic epithelial cells to prostate cancer (PCa) has been characterized as a transition from citrate secretion to citrate oxidation, from which one would anticipate enhanced mitochondrial complex I (CI) respiratory flux. Molecular mechanisms for this transformation are attributed to declining mitochondrial zinc concentrations. The unique metabolic properties of PCa cells have become a hot research area. Several publications have provided indirect evidence based on investigations using pre-clinical models, established cell lines, and fixed or frozen tissue bank samples. However, confirmatory respiratory analysis on fresh human tissue has been hampered by multiple difficulties. Thus, few mitochondrial respiratory assessments of freshly procured human PCa tissue have been published on this question. Our objective is to document relative mitochondrial CI and complex II (CII) convergent electron flow to the Q-junction and to identify electron transport system (ETS) alterations in fresh PCa tissue. The results document a CII succinate: quinone oxidoreductase (SQR) dominant succinate oxidative flux model in the fresh non-malignant prostate tissue, which is enhanced in malignant tissue. CI NADH: ubiquinone oxidoreductase activity is impaired rather than predominant in high-grade malignant fresh prostate tissue. Given these novel findings, succinate and CII are promising targets for treating and preventing PCa.

Funder

Houston Methodist

J. Kotts

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3