Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection

Author:

Younessi-Hamzekhanlu MehdiORCID,Gailing OliverORCID

Abstract

The ecological and economic importance of forest trees is evident and their survival is necessary to provide the raw materials needed for wood and paper industries, to preserve the diversity of associated animal and plant species, to protect water and soil, and to regulate climate. Forest trees are threatened by anthropogenic factors and biotic and abiotic stresses. Various diseases, including those caused by fungal pathogens, are one of the main threats to forest trees that lead to their dieback. Genomics and transcriptomics studies using next-generation sequencing (NGS) methods can help reveal the architecture of resistance to various diseases and exploit natural genetic diversity to select elite genotypes with high resistance to diseases. In the last two decades, QTL mapping studies led to the identification of QTLs related to disease resistance traits and gene families and transcription factors involved in them, including NB-LRR, WRKY, bZIP and MYB. On the other hand, due to the limitation of recombination events in traditional QTL mapping in families derived from bi-parental crosses, genome-wide association studies (GWAS) that are based on linkage disequilibrium (LD) in unstructured populations overcame these limitations and were able to narrow down QTLs to single genes through genotyping of many individuals using high-throughput markers. Association and QTL mapping studies, by identifying markers closely linked to the target trait, are the prerequisite for marker-assisted selection (MAS) and reduce the breeding period in perennial forest trees. The genomic selection (GS) method uses the information on all markers across the whole genome, regardless of their significance for development of a predictive model for the performance of individuals in relation to a specific trait. GS studies also increase gain per unit of time and dramatically increase the speed of breeding programs. This review article is focused on the progress achieved in the field of dissecting forest tree disease resistance architecture through GWAS and QTL mapping studies. Finally, the merit of methods such as GS in accelerating forest tree breeding programs is also discussed.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3