Electrical Stimulation of Human Adipose-Derived Mesenchymal Stem Cells on O2 Plasma-Treated ITO Glass Promotes Osteogenic Differentiation

Author:

Baek SeunghoORCID,Park HeekyungORCID,Igci Fatma Dilara,Lee DonghyunORCID

Abstract

Electrical signals represent an essential form of cellular communication. For decades, electrical stimulation has been used effectively in clinical practice to enhance bone healing. However, the detailed mechanisms between electrical stimulation and bone healing are not well understood. In addition, there have been many difficulties in setting up a stable and efficient electrical stimulation system within the in vitro environment. Therefore, various conductive materials and electrical stimulation methods have been tested to establish an effective electrical stimulation system. Through these systems, many studies have been conducted on the effects of electrical stimulation on bone healing and osteogenic differentiation. However, previous studies were limited by the use of opaque conductive materials that obscure the cells; fluorescent observations and staining are known to be two of the critical methods to confirm the states of the cells. Indium tin oxide (ITO) glass is known to have excellent transparency and conductivity, but it is challenging to cultivate cells due to low cell adhesion characteristics. Therefore, we used O2 plasma treatment to increase the hydrophilicity and wettability of ITO glass. This enhanced cell affinity to the glass, providing a stable surface for the cells to attach. Then, electrical stimulation was applied with an amplitude range of 10 to 200 µA at a frequency of 10 Hz. Our results demonstrated that the osteogenic differentiation efficiency was maximized under the amplitude conditions of 10 µA and 50 µA. Accordingly, the results of our study suggest the development of an excellent platform in the field of biological research as a good tool to elucidate various mechanisms of cell bioactivity under electrical conditions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress on Electro‐Enhancement of Cell Manufacturing;Small Methods;2023-12-07

2. Advanced Optical Materials: From Materials to Applications;International Journal of Molecular Sciences;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3