Metabolic Regulation and Lipidomic Remodeling in Relation to Spermidine-induced Stress Tolerance to High Temperature in Plants

Author:

Li ZhouORCID,Cheng Bizhen,Zhao Yue,Luo Lin,Zhang Yan,Feng GuangyanORCID,Han Liebao,Peng Yan,Zhang XinquanORCID

Abstract

Beneficial effects of spermidine (Spd) on alleviating abiotic stress damage have been explored in plants for hundreds of years, but limited information is available about its roles in regulating lipids signaling and metabolism during heat stress. White clover (Trifolium repens) plants were pretreated with 70 μM Spd and then subjected to high temperature (38/33 °C) stress for 20 days. To further investigate the effect of Spd on heat tolerance, transgenic Arabidopsisthaliana overexpressing a TrSAMS encoding a key enzyme involved in Spd biosynthesis was exposed to high temperature (38/33 °C) stress for 10 days. A significant increase in endogenous Spd content in white clover by exogenous application of Spd or the TrSAMS overexpression in Arabidopsisthaliana could effectively mitigate heat-induced growth retardation, oxidative damage to lipids, and declines in photochemical efficiency and cell membrane stability. Based on the analysis of metabolomics, the amino acids and vitamins metabolism, biosynthesis of secondary metabolites, and lipids metabolism were main metabolic pathways regulated by the Spd in cool-season white clover under heat stress. Further analysis of lipidomics found the TrSAMS-transgenic plants maintained relatively higher accumulations of total lipids, eight phospholipids (PC, phosphatidylcholine; PG, phosphatidylglycerol; PS, phosphatidylserine; CL, cardiolipin; LPA, lysophosphatidic acid; LPC, lyso phosphatidylcholine; LPG, lyso phosphatidylglycerol; and LPI, lyso phosphatidylinositol), one glycoglycerolipid (DGDG, digalactosyl diacylglycerol), and four sphingolipids (Cer, ceramide; CerG2GNAc1, dihexosyl N-acetylhexosyl ceramide; Hex1Cer, hexosyl ceramide; and ST, sulfatide), higher ratio of DGDG: monogalactosyl diacylglycerol (MGDG), and lower unsaturation level than wild-type Arabidopsisthaliana in response to heat stress. Spd-induced lipids accumulation and remodeling could contribute to better maintenance of membrane stability, integrity, and functionality when plants underwent a long period of heat stress. In addition, the Spd significantly up-regulated PIP2 and PA signaling pathways, which was beneficial to signal perception and transduction for stress defense. Current findings provide a novel insight into the function of Spd against heat stress through regulating lipids signaling and reprograming in plants.

Funder

the earmarked fund for CARS

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3