Molecular Mechanism of Mouse Uterine Smooth Muscle Regulation on Embryo Implantation

Author:

Cao Rui,Yang Zhen-Shan,Hu Sui-Li,Liang Shi-Jin,Zhang Shu-Miao,Zhu Song-Qi,Lu Lin,Long Cheng-Hong,Yao Si-Tong,Ma Yong-Jiang,Liang Xiao-Huan

Abstract

Myometrium plays critical roles in multiple processes such as embryo spacing through peristalsis during mouse implantation, indicating vital roles of smooth muscle in the successful establishment and quality of implantation. Actin, a key element of cytoskeleton structure, plays an important role in the movement and contraction of smooth muscle cells (SMCs). However, the function of peri-implantation uterine smooth muscle and the regulation mechanism of muscle tension are still unclear. This study focused on the molecular mechanism of actin assembly regulation on implantation in smooth muscle. Phalloidin is a highly selective bicyclic peptide used for staining actin filaments (also known as F-actin). Phalloidin staining showed that F-actin gradually weakened in the CD-1 mouse myometrium from day 1 to day 4 of early pregnancy. More than 3 mice were studied for each group. Jasplakinolide (Jasp) used to inhibit F-actin depolymerization promotes F-actin polymerization in SMCs during implantation window and consequently compromises embryo implantation quality. Transcriptome analysis following Jasp treatment in mouse uterine SMCs reveals significant molecular changes associated with actin assembly. Tagln is involved in the regulation of the cell cytoskeleton and promotes the polymerization of G-actin to F-actin. Our results show that Tagln expression is gradually reduced in mouse uterine myometrium from day 1 to 4 of pregnancy. Furthermore, progesterone inhibits the expression of Tagln through the progesterone receptor. Using siRNA to knock down Tagln in day 3 SMCs, we found that phalloidin staining is decreased, which confirms the critical role of Tagln in F-actin polymerization. In conclusion, our data suggested that decreases in actin assembly in uterine smooth muscle during early pregnancy is critical to optimal embryo implantation. Tagln, a key molecule involved in actin assembly, regulates embryo implantation by controlling F-actin aggregation before implantation, suggesting moderate uterine contractility is conducive to embryo implantation. This study provides new insights into how the mouse uterus increases its flexibility to accommodate implanting embryos in the early stage of pregnancy.

Funder

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3