CCBE1 Is Essential for Epicardial Function during Myocardium Development

Author:

Bonet FernandoORCID,Añez Sabrina Brito,Inácio José ManuelORCID,Futschik Matthias E.ORCID,Belo José AntonioORCID

Abstract

The epicardium is a single cell layer of mesothelial cells that plays a critical role during heart development contributing to different cardiac cell types of the developing heart through epithelial-to-mesenchymal transition (EMT). Moreover, the epicardium is a source of secreted growth factors that promote myocardial growth. CCBE1 is a secreted extracellular matrix protein expressed by epicardial cells that is required for the formation of the primitive coronary plexus. However, the role of CCBE1 during epicardial development was still unknown. Here, using a Ccbe1 knockout (KO) mouse model, we observed that loss of CCBE1 leads to congenital heart defects including thinner and hyper-trabeculated ventricular myocardium. In addition, Ccbe1 mutant hearts displayed reduced proliferation of cardiomyocyte and epicardial cells. Epicardial outgrowth culture assay to assess epicardial-derived cells (EPDC) migration showed reduced invasion of the collagen gel by EPDCs in Ccbe1 KO epicardial explants. Ccbe1 KO hearts also displayed fewer nonmyocyte/nonendothelial cells intramyocardially with a reduced proliferation rate. Additionally, RNA-seq data and experimental validation by qRT-PCR showed a marked deregulation of EMT-related genes in developing Ccbe1 mutant hearts. Together, these findings indicate that the myocardium defects in Ccbe1 KO mice arise from disruption of epicardial development and function.

Funder

Fundação para a Ciência e a Tecnologia

Scientific Employment Stimulus

iNOVA4Health

Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência

FEDER

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3