Abstract
In the present study, graphene oxide foils 10 μm thick have been irradiated in vacuum using same charge state (one charge state) ions, such as protons, helium and oxygen ions, at the same energies (3 MeV) and fluences (from 5 × 1011 ion/cm2 to 5 × 1014 ion/cm2). The structural changes generated by the ion energy deposition and investigated by X-ray diffraction have suggested the generation of new phases, as reduced GO, GO quantum dots and graphitic nanofibers, carbon nanotubes, amorphous carbon and stacked-cup carbon nanofibers. Further analyses, based on Rutherford Backscattering Spectrometry and Elastic Recoil Detection Analysis, have indicated a reduction of GO connected to the atomic number of implanted ions. The morphological changes in the ion irradiated GO foils have been monitored by Transmission Electron, Atomic Force and Scanning Electron microscopies. The present study aims to better structurally, compositionally and morphologically characterize the GO foils irradiated by different ions at the same conditions and at very low ion fluencies to validate the use of GO for radiation detection and propose it as a promising dosimeter. It has been observed that GO quantum dots are produced on the GO foil when it is irradiated by proton, helium and oxygen ions and their number increases with the atomic number of beam gaseous ion.
Funder
CANAM
European Regional Development Fund
Slovak Research and Development Agency
OP RDE
MEYS
GACR
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献