Spatiotemporal Variation in Gross Primary Productivity and Their Responses to Climate in the Great Lakes Region of Sub-Saharan Africa during 2001–2020

Author:

Kayiranga Alphonse,Chen BaozhangORCID,Wang Fei,Nthangeni Winny,Dilawar AdilORCID,Hategekimana YvesORCID,Zhang Huifang,Guo Lifeng

Abstract

The impacts of climate on spatiotemporal variations of eco-physiological and bio-physical factors have been widely explored in previous research, especially in dry areas. However, the understanding of gross primary productivity (GPP) variations and its interactions with climate in humid and semi-humid areas remains unclear. Based on hyperspectral satellite remotely sensed vegetation phenology processes and related indices and the re-analysed climate datasets, we investigated the seasonal and inter-annual variability of GPP by using different light-use efficiency (LUE) models including the Carnegie-Ames-Stanford Approaches (CASA) model, vegetation photosynthesis models (VPMChl and VPMCanopy) and Moderate Resolution Imaging Spectroradiometer (MODIS) GPP products (MOD17A2H) during 2001–2020 over the Great Lakes region of Sub-Saharan Africa (GLR-SSA). The models’ validation against the in situ GPP-based upscaled observations (GPP-EC) indicated that these three models can explain 82%, 79% and 80% of GPP variations with root mean square error (RMSE) values of 5.7, 8.82 and 10.12 g C·m−2·yr−1, respectively. The spatiotemporal variations of GPP showed that the GLR-SSA experienced: (i) high GPP values during December-May; (ii) high annual GPP increase during 2002–2003, 2011–2013 and 2015–2016 and annual decreasing with a marked alternation in other years; (iii) evergreen broadleaf forests having the highest GPP values while grasslands and croplands showing lower GPP values. The spatial correlation between GPP and climate factors indicated 60% relative correlation between precipitation and GPP and 65% correction between surface air temperature and GPP. The results also showed high GPP values under wet conditions (in rainy seasons and humid areas) that significantly fell by the rise of dry conditions (in long dry season and arid areas). Therefore, these results showed that climate factors have potential impact on GPP variability in this region. However, these findings may provide a better understanding of climate implications on GPP variability in the GLR-SSA and other tropical climate zones.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3