Author:
Abulaiti Adilai,Nurmemet Ilyas,Muhetaer Nuerbiye,Xiao Sentian,Zhao Jing
Abstract
Currently, soil salinization is one of the main forms of land degradation and desertification. Soil salinization not only seriously restricts the development of agriculture and the economy, but also poses a threat to the ecological environment. The main purpose of this study is to map soil salinity in Keriya Oasis, northwestern China using the PALSAR-2 fully polarized synthetic aperture radar (PolSAR) L-band data and Landsat8-OLI (OLI) optical data combined with deep learning (DL) methods. A field survey is conducted, and soil samples are collected from 20 April 2015 to 1 May 2015. To mine the hidden information in the PALSAR-2 data, multiple polarimetric decomposition methods are implemented, and a wide range of polarimetric parameters and synthetic aperture radar discriminators are derived. The radar vegetation index (RVI) is calculated using PALSAR-2 data, while the normalized difference vegetation index (NDVI) and salinity index (SI) are calculated using OLI data. The random forest (RF)-integrated learning algorithm is used to select the optimal feature subset composed of eight polarimetric elements. The RF, support vector machine, and DL methods are used to extract different degrees of salinized soil. The results show that the OLI+PALSAR-2 image classification result of the DL classification was relatively good, having the highest overall accuracy of 91.86% and a kappa coefficient of 0.90. This method is helpful to understand and monitor the spatial distribution of soil salinity more effectively to achieve sustainable agricultural development and ecological stability.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference113 articles.
1. Spatiotemporal Monitoring of Soil Salinization in Irrigated Tadla Plain (Morocco) Using Satellite Spectral Indices;Int. J. Appl. Earth Obs. Geoinf.,2016
2. Long-term monitoring of soil salinity in a semi-arid environment of Turkey;Catena,2020
3. Naimi, S., Ayoubi, S., Zeraatpisheh, M., and Dematte, J.A.M. (2021). Ground Observations and Environmental Covariates Integration for Mapping of Soil Salinity: A Machine Learning-Based Approach. Remote Sens., 13.
4. Yu, P.Y. (2014). Effects of Potassium Ion on Physiologicalproperty of Malus Zumi Seedling under Salt. [Master’s Thesis, Tianjin Agricultural University]. (In Chinese).
5. The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR;Remote Sens. Environ.,2001
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献