A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods

Author:

Kadkhodazadeh MojtabaORCID,Valikhan Anaraki Mahdi,Morshed-Bozorgdel AmirrezaORCID,Farzin SaeedORCID

Abstract

In the present study, a new methodology for reference evapotranspiration (ETo) prediction and uncertainty analysis under climate change and COVID-19 post-pandemic recovery scenarios for the period 2021–2050 at nine stations in the two basins of Lake Urmia and Sefidrood is presented. For this purpose, firstly ETo data were estimated using meteorological data and the FAO Penman–Monteith (FAO-56 PM) method. Then, ETo modeling by six machine learning techniques including multiple linear regression (MLR), multiple non-linear regression (MNLR), multivariate adaptive regression splines (MARS), model tree M5 (M5), random forest (RF) and least-squares boost (LSBoost) was carried out. The technique for order of preference by similarity to ideal solution (TOPSIS) method was used under seven scenarios to rank models with evaluation and time criteria in the next step. After proving the acceptable performance of the LSBoost model, the downscaling of temperature (T) and precipitation (P) by the delta change factor (CF) method under three models ACCESS-ESM1-5, CanESM5 and MRI-ESM2-0 (scenarios SSP245-cov-fossil (SCF), SSP245-cov-modgreen (SCM) and SSP245-cov-strgreen (SCS)) was performed. The results showed that the monthly changes in the average T increases at all stations for all scenarios. Also, the average monthly change ratio of P increases in most stations and scenarios. In the next step, ETo forecasting under climate change for periods (2021–2050) was performed using the best model. Prediction results showed that ETo increases in all scenarios and stations in a pessimistic and optimistic state. In addition, the Monte Carlo method (MCM) showed that the lowest uncertainty is related to the Mianeh station in the MRI-ESM2-0 model and SCS scenario.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3