Abstract
A phenomenological model for single particle erosion (SPE) of plastic materials was constructed based on the Hertzian contact theory and conservation of momentum to solve the particle impact erosion. The extrusion deformation and contact time of materials in three processes of wall elastic extrusion, elastic-plastic extrusion, and elastic recovery were discussed. Later, the critical angle for sliding contact between the particle and metal surface was calculated according to the impact angle of a particle and the corresponding critical sliding friction force of the particle. The wall indentation depths under sliding contact and no sliding contact were compared. Finally, the erosion volume of materials by impact of a single particle was gained. Moreover, a contrastive analysis on calculation results was carried out by using the gas-solid jet erosion experiment. Contact time, normal and tangential deformations of materials, as well as material erosion under sliding contact and no sliding contact in two processes of particle extrusion and rebound were gained from calculation and experiment. The constructed model showed a good agreement without involving too many empirical coefficients.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献