Effects on the Mechanical Properties of Nacre-Like Bio-Hybrid Membranes with Inter-Penetrating Petal Structure Based on Magadiite

Author:

Ge Mingliang,Wang Xubin,Du Mingyi,Liang GuodongORCID,Hu Guoqing,S.M. Jahangir Alam

Abstract

Rigid biological systems are increasingly becoming a source of inspiration for the fabrication of the advanced functional materials due to their diverse hierarchical structures and remarkable engineering properties. As a bionic biomaterial with a clear layered structure, excellent mechanical properties, and interesting rainbow colors, nacre has become one of the most attractive models for novel artificial materials design. In this research paper, the tough and strong nacre-like bio-hybrid membranes with an interpenetrating petals structure were fabricated from chitosan (CS) and magadiite (MAG) clay nanosheets through the gel-casting self-assembling method. The analyses from X-ray diffraction (XRD), scanning electron microscope (SEM), and observations of water droplets on membranes indicated that the nacre-like hybrid membranes had a layered compact structure. Fourier transforms infrared spectroscopy (FTIR) analyses suggested that the CS molecular chains formed chemical bonds and hydrogen bonds with MAG layers. The inter-penetrating petal layered structure had a good effect on the mechanical properties of a nacre-like bio-hybrid membranes and the tensile strength of the hybrid membranes could reach at 78.6 MPa. However, the transmission analyses of the results showed that the hybrid membranes still had a certain visible light transmittance. Finally, the hybrid membranes possessed an intriguing efficient fire-shielding property during exposure to the flame of alcohol burner. Consequently, the great biocompatibility and excellent mechanical properties of the bio-hybrid membranes with the special interpenetrating petals structure provides a great opportunity for these composites to be widely applied in biomaterial research.

Funder

Guangdong Provincial Innovative Projects for Ordinary University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3