W-Band Photonic Receiver for Compact Cloud Radars

Author:

Strekalov DmitryORCID,Majurec NinoslavORCID,Matsko AndreyORCID,Ilchenko VladimirORCID,Tanelli SimoneORCID,Ahmed RaziORCID

Abstract

We introduce an RF-photonics receiver concept enabling the next generation of ultra-compact millimeter wave radars suitable for cloud and precipitation profiling, planetary boundary layer observations, altimetry and surface scattering measurements. The RF-photonics receiver architecture offers some compelling advantages over traditional electronic implementations, including a reduced number of components and interfaces, leading to reduced size, weight and power (SWaP), as well as lower system noise, leading to improved sensitivity. Low instrument SWaP with increased sensitivity makes this approach particularly attractive for compact space-borne radars. We study the photonic receiver front-end both analytically and numerically and predict the feasibility of the greater than unity photonic gain and lower than ambient effective noise temperature of the device. The receiver design is optimized for W-band (94 GHz) radars, which are generally assessed to be the primary means for observing clouds in the free troposphere as well as planetary boundary layer from space.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3