The Effect of TGFβ1 in Adipocyte on Inflammatory and Fibrotic Markers at Different Stages of Adipocyte Differentiation

Author:

Maharjan Babu Raja,McLennan Susan V.,Twigg Stephen M.,Williams Paul F.ORCID

Abstract

Transforming growth factor beta (TGFβ) is a versatile cytokine. Although a profibrotic role of TGFβ is well established, its effect on tissue inhibitor of metalloproteinase (TIMPs) and inflammatory mediators are incompletely described. This study investigates the profibrotic and pro-inflammatory role of TGFβ1 during adipocyte differentiation. NIH3T3L1 cells were used for the in vitro study and were differentiated by adding a standard differentiation mix either with rosiglitazone (R-Diff) or without (S-Diff). Recombinant TGFβ1 (2 ng/mL) was added to the undifferentiated preadipocyte during the commitment stage and at the terminal differentiation stage. TGFβ1 treatment significantly decreased adiponectin mRNA at both early commitment (>300 fold) and terminal differentiated cells [S-Diff (~33%) or R-Diff (~20%)]. TGFβ1 upregulated collagen VI mRNA and its regulators connective tissue growth factor (CCN2/CTGF), TIMP1 and TIMP3 mRNA levels in undifferentiated preadipocytes and adipocytes at commitment stage. But in the terminal differentiated adipocytes, changes in mRNA and protein of collagen VI and TIMP3 mRNA were not observed despite an increase in CCN2/CTGF, TIMP1 mRNA. Although TGFβ1 upregulated interleukin-6 (IL6) and monocyte chemoattractant protein-1 (MCP1) mRNA at all stages of differentiation, decreased tumor necrosis factor-α (TNFα) mRNA was observed early in adipocyte differentiation. This study highlights the complex role of TGFβ1 on extracellular matrix (ECM) remodeling and inflammatory markers in stimulating both synthetic and inhibitory markers of fibrosis at different stages of adipocyte differentiation.

Funder

Kellion Diabetes Fund in the Sydney Medical School Foundation of the University of Sydney

Endocrinology Trust Fund of Royal Prince Alfred Hospital Sydney

Publisher

MDPI AG

Subject

General Medicine

Reference46 articles.

1. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet;Diabetes,2011

2. Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling;Cell Metab.,2011

3. The insulin response integrates increased TGF-beta signaling through Akt-induced enhancement of cell surface delivery of TGF-beta receptors;Sci. Signal.,2015

4. Elevated expression of transforming growth factor-beta in adipose tissue from obese mice;Mol. Med.,1997

5. Src Family Tyrosine Kinases Participate in Insulin-like Growth Factor I Mitogenic Signaling in 3T3-L1 Cells1;Cell Growth Differ.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3