The Drosophila miR-959–962 Cluster Members Repress Toll Signaling to Regulate Antibacterial Defense during Bacterial Infection

Author:

Li Ruimin,Yao Xiaolong,Zhou Hongjian,Jin Ping,Ma Fei

Abstract

MicroRNAs (miRNAs) are a class of ~22 nt non-coding RNA molecules in metazoans capable of down-regulating target gene expression by binding to the complementary sites in the mRNA transcripts. Many individual miRNAs are implicated in a broad range of biological pathways, but functional characterization of miRNA clusters in concert is limited. Here, we report that miR-959–962 cluster (miR-959/960/961/962) can weaken Drosophila immune response to bacterial infection evidenced by the reduced expression of antimicrobial peptide Drosomycin (Drs) and short survival within 24 h upon infection. Each of the four miRNA members is confirmed to contribute to the reduced Drs expression and survival rate of Drosophila. Mechanically, RT-qPCR and Dual-luciferase reporter assay verify that tube and dorsal (dl) mRNAs, key components of Toll pathway, can simultaneously be targeted by miR-959 and miR-960, miR-961, and miR-962, respectively. Furthermore, miR-962 can even directly target to the 3′ untranslated region (UTR) of Toll. In addition, the dynamic expression pattern analysis in wild-type flies reveals that four miRNA members play important functions in Drosophila immune homeostasis restoration at the late stage of Micrococcus luteus (M. luteus) infection. Taken together, our results identify four miRNA members from miR-959–962 cluster as novel suppressors of Toll signaling and enrich the repertoire of immune-modulating miRNA in Drosophila.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3