Cell-Based Tracers as Trojan Horses for Image-Guided Surgery

Author:

Sier Vincent Q.ORCID,de Vries Margreet R.ORCID,van der Vorst Joost R.ORCID,Vahrmeijer Alexander L.,van Kooten Cornelis,Cruz Luis J.,de Geus-Oei Lioe-FeeORCID,Ferreira Valerie,Sier Cornelis F. M.ORCID,Alves FraukeORCID,Muthana Munitta

Abstract

Surgeons rely almost completely on their own vision and palpation to recognize affected tissues during surgery. Consequently, they are often unable to distinguish between different cells and tissue types. This makes accurate and complete resection cumbersome. Targeted image-guided surgery (IGS) provides a solution by enabling real-time tissue recognition. Most current targeting agents (tracers) consist of antibodies or peptides equipped with a radiolabel for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), magnetic resonance imaging (MRI) labels, or a near-infrared fluorescent (NIRF) dye. These tracers are preoperatively administered to patients, home in on targeted cells or tissues, and are visualized in the operating room via dedicated imaging systems. Instead of using these ‘passive’ tracers, there are other, more ‘active’ approaches of probe delivery conceivable by using living cells (macrophages/monocytes, neutrophils, T cells, mesenchymal stromal cells), cell(-derived) fragments (platelets, extracellular vesicles (exosomes)), and microorganisms (bacteria, viruses) or, alternatively, ‘humanized’ nanoparticles. Compared with current tracers, these active contrast agents might be more efficient for the specific targeting of tumors or other pathological tissues (e.g., atherosclerotic plaques). This review provides an overview of the arsenal of possibilities applicable for the concept of cell-based tracers for IGS.

Funder

Cancer Research UK

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3