ABT-751 Induces Multiple Anticancer Effects in Urinary Bladder Urothelial Carcinoma-Derived Cells: Highlighting the Induction of Cytostasis through the Inhibition of SKP2 at Both Transcriptional and Post-Translational Levels

Author:

Dehghanian Seyedeh ZahraORCID,Pan Cheng-Tang,Lee Jasmine MarianneORCID,Shiue Yow-LingORCID

Abstract

The objective was to investigate the anti-cancer effects and underlying molecular mechanisms of cytostasis which were activated by an anti-microtubule drug, ABT-751, in two urinary bladder urothelial carcinoma (UBUC)-derived cell lines, BFTC905 and J82, with distinct genetic backgrounds. A series of in vitro assays demonstrated that ABT-751 induced G2/M cell cycle arrest, decreased cell number in the S phase of the cell cycle and suppressed colony formation/independent cell growth, accompanied with alterations of the protein levels of several cell cycle regulators. In addition, ABT-751 treatment significantly hurdled cell migration and invasion along with the regulation of epithelial–mesenchymal transition-related proteins. ABT-751 triggered autophagy and apoptosis, downregulated the mechanistic target of rapamycin kinase (MTOR) and upregulated several pro-apoptotic proteins that are involved in extrinsic and intrinsic apoptotic pathways. Inhibition of autophagosome and autolysosome enhanced apoptosis was also observed. Through the inhibition of the NFκB signaling pathway, ABT-751 suppressed S-phase kinase associated protein 2 (SKP2) transcription and subsequent translation by downregulation of active/phospho-AKT serine/threonine kinase 1 (AKT1), component of inhibitor of nuclear factor kappa B kinase complex (CHUK), NFKB inhibitor alpha (NFKBIA), nuclear RELA proto-oncogene, NFκB subunit (RELA) and maintained a strong interaction between NFKBIA and RELA to prevent RELA nuclear translocation for SKP2 transcription. ABT-751 downregulated stable/phospho-SKP2 including pSKP2(S64) and pSKP2(S72), which targeted cyclin-dependent kinase inhibitors for degradation through the inactivation of AKT. Our results suggested that ABT-751 may act as an anti-cancer drug by inhibiting cell migration, invasion yet inducing cell cycle arrest, autophagy and apoptosis in distinct UBUC-derived cells. Particularly, the upstream molecular mechanism of its anticancer effects was identified as ABT-751-induced cytostasis through the inhibition of SKP2 at both transcriptional and post-translational levels to stabilize cyclin dependent kinase inhibitor 1A (CDKN1A) and CDKN1B proteins.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference49 articles.

1. World Health Organization Classification Of Tumour. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs;Eble,2004

2. Environmental and Heritable Factors in the Causation of Cancer — Analyses of Cohorts of Twins from Sweden, Denmark, and Finland

3. Overview of bladder cancer trials in the Radiation Therapy Oncology Group

4. Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach

5. Molecular mechanisms in urinary bladder carcinogenesis;Volanis;J. BU ON J. Balk. Union Oncol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3