Evaluation of the Multimycotoxin-Degrading Efficiency of Rhodococcus erythropolis NI1 Strain with the Three-Step Zebrafish Microinjection Method

Author:

Garai Edina,Risa Anita,Varga Emese,Cserháti Mátyás,Kriszt Balázs,Urbányi Béla,Csenki Zsolt

Abstract

The multimycotoxin-degrading efficiency of the Rhodococcus erythropolis NI1 strain was investigated with a previously developed three-step method. NI1 bacterial metabolites, single and combined mycotoxins and their NI1 degradation products, were injected into one cell stage zebrafish embryos in the same doses. Toxic and interaction effects were supplemented with UHPLC-MS/MS measurement of toxin concentrations. Results showed that the NI1 strain was able to degrade mycotoxins and their mixtures in different proportions, where a higher ratio of mycotoxins were reduced in combination than single ones. The NI1 strain reduced the toxic effects of mycotoxins and mixtures, except for the AFB1+T-2 mixture. Degradation products of the AFB1+T-2 mixture by the NI1 strain were more toxic than the initial AFB1+T-2 mixture, while the analytical results showed very high degradation, which means that the NI1 strain degraded this mixture to toxic degradation products. The NI1 strain was able to detoxify the AFB1, ZEN, T-2 toxins and mixtures (except for AFB1+T-2 mixture) during the degradation experiments, which means that the NI1 strain degraded these to non-toxic degradation products. The results demonstrate that single exposures of mycotoxins were very toxic. The combined exposure of mycotoxins had synergistic effects, except for ZEN+T-2 and AFB1+ZEN +T-2, whose mixtures had very strong antagonistic effects.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Ministry for Innovation and Technology

Magyar Tudományos Akadémia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3