mRNA and miRNA Expression Analyses of the MYC/E2F/miR-17-92 Network in the Most Common Pediatric Brain Tumors

Author:

Gruszka RenataORCID,Zakrzewski Krzysztof,Liberski Paweł Piotr,Zakrzewska Magdalena

Abstract

Numerous molecular factors disrupt the correctness of the cell cycle process leading to the development of cancer due to increased cell proliferation. Among known causative factors of such process is abnormal gene expression. Nowadays in the light of current knowledge such alterations are frequently considered in the context of mRNA–miRNA correlation. One of the molecular factors with potential value in tumorigenesis is the feedback loop between MYC and E2F genes in which miR-17-5p and miR-20a from the miR-17-92 cluster are involved. The current literature shows that overexpression of the members of the OncomiR-1 are involved in the development of many solid tumors. In the present work, we investigated the expression of components of the MYC/E2F/miR-17-92 network and their closely related elements including members of MYC and E2F families and miRNAs from two paralogs of miR-17-92: miR-106b-25 and miR-106a-363, in the most common brain tumors of childhood, pilocytic astrocytoma (PA), WHO grade 1; ependymoma (EP), WHO grade 2; and medulloblastoma (MB), WHO grade 4. We showed that the highest gene expression was observed in the MYC family for MYCN and in the E2F family for E2F2. Positive correlation was observed between the gene expression and tumor grade and type, with the highest expression being noted for medulloblastomas, followed by ependymomas, and the lowest for pilocytic astrocytomas. Most members of miR-17-92, miR-106a-363 and miR-106b-25 clusters were upregulated and the highest expression was noted for miR-18a and miR-18b. The rest of the miRNAs, including miR-19a, miR-92a, miR-106a, miR-93, or miR-25 also showed high values. miR-17-5p, miR-20a obtained a high level of expression in medulloblastomas and ependymomas, while close to the control in the pilocytic astrocytoma samples. miRNA expression also depended on tumor grade and histology.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3