Abstract
Here we describe the effects of a controlled, 30 min, high-intensity cycling test on blood rheology and the metabolic profiles of red blood cells (RBCs) and plasma from well-trained males. RBCs demonstrated decreased deformability and trended toward increased generation of microparticles after the test. Meanwhile, metabolomics and lipidomics highlighted oxidative stress and activation of membrane lipid remodeling mechanisms in order to cope with altered properties of circulation resulting from physical exertion during the cycling test. Of note, intermediates from coenzyme A (CoA) synthesis for conjugation to fatty acyl chains, in parallel with reversible conversion of carnitine and acylcarnitines, emerged as metabolites that significantly correlate with RBC deformability and the generation of microparticles during exercise. Taken together, we propose that RBC membrane remodeling and repair plays an active role in the physiologic response to exercise by altering RBC properties.
Funder
National Heart, Lung, and Blood Institute
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献