Marginal Adaptation and Microbial Leakage at Conometric Prosthetic Connections for Implant-Supported Single Crowns: An In Vitro Investigation

Author:

Gehrke PeterORCID,Hartjen PhilipORCID,Smeets Ralf,Gosau Martin,Peters Ulrike,Beikler Thomas,Fischer Carsten,Stolzer Carolin,Geis-Gerstorfer Jürgen,Weigl Paul,Schäfer Sogand

Abstract

Encouraging clinical results were reported on a novel cone-in-cone coupling for the fixation of dental implant-supported crowns (Acuris, Dentsply Sirona Implants, Mölndal, Sweden). However, the presence or absence of a microgap and a potential bacterial leakage at the conometric joint has not yet been investigated. A misfit and a resulting gap between the conometric components could potentially serve as a bacterial reservoir that promotes plaque formation, which in turn may lead to inflammation of the peri-implant tissues. Thus, a two-fold study set-up was designed in order to evaluate the bidirectional translocation of bacteria along conometrically seated single crowns. On conometric abutments filled with a culture suspension of anaerobic bacteria, the corresponding titanium nitride-coated (TiN) caps were fixed by friction. Each system was sterilized and immersed in culture medium to provide an optimal environment for microbial growth. Positive and negative controls were prepared. Specimens were stored in an anaerobic workstation, and total and viable bacterial counts were determined. Every 48 h, samples were taken from the reaction tubes to inoculate blood agar plates and to isolate bacterial DNA for quantification using qrt-PCR. In addition, one Acuris test system was subjected to scanning electron microscopy (SEM) to evaluate the precision of fit of the conometric coupling and marginal crown opening. Throughout the observational period of one week, blood agar plates of the specimens showed no viable bacterial growth. qrt-PCR, likewise, yielded a result approaching zero with an amount of about 0.53 × 10−4 µg/mL DNA. While the luting gap/marginal opening between the TiN-cap and the ceramic crown was within the clinically acceptable range, the SEM analysis failed to identify a measurable microgap at the cone-in-cone junction. Within the limits of the in-vitro study it can be concluded that the Acuris conometric interface does not allow for bacterial translocation under non-dynamic loading conditions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3