Failure Mechanisms of Cu–Cu Bumps under Thermal Cycling

Author:

Shie Kai-ChengORCID,Hsu Po-Ning,Li Yu-Jin,Tran Dinh-PhucORCID,Chen ChihORCID

Abstract

The failure mechanisms of Cu–Cu bumps under thermal cycling test (TCT) were investigated. The resistance change of Cu–Cu bumps in chip corners was less than 20% after 1000 thermal cycles. Many cracks were found at the center of the bonding interface, assumed to be a result of weak grain boundaries. Finite element analysis (FEA) was performed to simulate the stress distribution under thermal cycling. The results show that the maximum stress was located close to the Cu redistribution lines (RDLs). With the TiW adhesion layer between the Cu–Cu bumps and RDLs, the bonding strength was strong enough to sustain the thermal stress. Additionally, the middle of the Cu–Cu bumps was subjected to tension. Some triple junctions with zig-zag grain boundaries after TCT were observed. From the pre-existing tiny voids at the bonding interface, cracks might initiate and propagate along the weak bonding interface. In order to avoid such failures, a postannealing bonding process was adopted to completely eliminate the bonding interface of Cu–Cu bumps. This study delivers a deep understanding of the thermal cycling reliability of Cu–Cu hybrid joints.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3