Abstract
Co-processing of radioactive effluents with coal fly ash-derived materials is recognized as a resource-saving approach for efficient stabilization/solidification of radioactive components of wastewater. In this context, the paper is focused on the hydrothermal synthesis of Sr2+-bearing aluminosilicate/silicate phases as analogs of a mineral-like 90Sr waste form using hollow glass-crystalline aluminosilicate microspheres from coal fly ash (cenospheres) as a glassy source of Si and Al (SiO2-Al2O3)glass) and Sr(NO3)2 solutions as 90Sr simulant wastewater. The direct conversion of cenosphere glass in the Sr(NO3)2-NaOH-H2O-(SiO2-Al2O3)glass system as well as Sr2+ sorption on cenosphere-derived analcime (ANA) in the Sr(NO3)2-H2O-ANA system were studied at 150–200 °C and autogenous pressure. The solid and liquid reaction products were characterized by SEM-EDS, PXRD, AAS and STA. In the Sr(NO3)2-NaOH-H2O-(SiO2-Al2O3)glass system, the hydrothermal processing at 150–200 °C removes 99.99% of the added Sr2+ from the solution by forming Sr-tobermorite and Sr-plagioclase phases. In the Sr(NO3)2-H2O-ANA system, Sr2+ sorption on analcime results in the formation of solid solutions (Na1−nSrn/2)AlSi2O6·H2O of the Na-analcime–Sr-wairakite series. The results can be considered as a basis for the development of environmentally sustainable technology for 90Sr removal from wastewater and immobilization in a mineral-like form by co-processing waste from coal-fired and nuclear power plants.
Funder
Russian Foundation of Basic Research
Subject
General Materials Science
Reference49 articles.
1. Power production waste
2. Global Aspects on Coal Combustion Products
https://www.coaltrans.com/insights/article/global-aspects-on-coal-combustion-products
3. Progressive utilisation prospects of coal fly ash: A review
4. Physical, chemical, and geotechnical properties of coal fly ash: A global review
5. Radioactive waste (RAW) conditioning, immobilization, and encapsulation processes and technologies: Overview and advances;Jantzen,2013
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献