Hydrothermal Co-Processing of Coal Fly Ash Cenospheres and Soluble Sr(II) as Environmentally Sustainable Approach to Sr-90 Immobilization in a Mineral-like Form

Author:

Vereshchagina TatianaORCID,Kutikhina Ekaterina,Solovyov Leonid,Vereshchagin SergeiORCID,Mazurova Elena,Anshits Alexander

Abstract

Co-processing of radioactive effluents with coal fly ash-derived materials is recognized as a resource-saving approach for efficient stabilization/solidification of radioactive components of wastewater. In this context, the paper is focused on the hydrothermal synthesis of Sr2+-bearing aluminosilicate/silicate phases as analogs of a mineral-like 90Sr waste form using hollow glass-crystalline aluminosilicate microspheres from coal fly ash (cenospheres) as a glassy source of Si and Al (SiO2-Al2O3)glass) and Sr(NO3)2 solutions as 90Sr simulant wastewater. The direct conversion of cenosphere glass in the Sr(NO3)2-NaOH-H2O-(SiO2-Al2O3)glass system as well as Sr2+ sorption on cenosphere-derived analcime (ANA) in the Sr(NO3)2-H2O-ANA system were studied at 150–200 °C and autogenous pressure. The solid and liquid reaction products were characterized by SEM-EDS, PXRD, AAS and STA. In the Sr(NO3)2-NaOH-H2O-(SiO2-Al2O3)glass system, the hydrothermal processing at 150–200 °C removes 99.99% of the added Sr2+ from the solution by forming Sr-tobermorite and Sr-plagioclase phases. In the Sr(NO3)2-H2O-ANA system, Sr2+ sorption on analcime results in the formation of solid solutions (Na1−nSrn/2)AlSi2O6·H2O of the Na-analcime–Sr-wairakite series. The results can be considered as a basis for the development of environmentally sustainable technology for 90Sr removal from wastewater and immobilization in a mineral-like form by co-processing waste from coal-fired and nuclear power plants.

Funder

Russian Foundation of Basic Research

Publisher

MDPI AG

Subject

General Materials Science

Reference49 articles.

1. Power production waste

2. Global Aspects on Coal Combustion Products https://www.coaltrans.com/insights/article/global-aspects-on-coal-combustion-products

3. Progressive utilisation prospects of coal fly ash: A review

4. Physical, chemical, and geotechnical properties of coal fly ash: A global review

5. Radioactive waste (RAW) conditioning, immobilization, and encapsulation processes and technologies: Overview and advances;Jantzen,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3