An Application of Machine Learning That Uses the Magnetic Resonance Imaging Metric, Mean Apparent Diffusion Coefficient, to Differentiate between the Histological Types of Ovarian Cancer

Author:

Song HeekyoungORCID,Bak Seongeun,Kim ImhyeonORCID,Woo Jae Yeon,Cho Eui JinORCID,Choi Youn JinORCID,Rha Sung Eun,Oh Shin Ah,Youn Seo YeonORCID,Lee Sung JongORCID

Abstract

This retrospective single-center study included patients diagnosed with epithelial ovarian cancer (EOC) using preoperative pelvic magnetic resonance imaging (MRI). The apparent diffusion coefficient (ADC) of the axial MRI maps that included the largest solid portion of the ovarian mass was analysed. The mean ADC values (ADCmean) were derived from the regions of interest (ROIs) of each largest solid portion. Logistic regression and three types of machine learning (ML) applications were used to analyse the ADCs and clinical factors. Of the 200 patients, 103 had high-grade serous ovarian cancer (HGSOC), and 97 had non-HGSOC (endometrioid carcinoma, clear cell carcinoma, mucinous carcinoma, and low-grade serous ovarian cancer). The median ADCmean of patients with HGSOC was significantly lower than that of patients without HGSOCs. Low ADCmean and CA 19-9 levels were independent predictors for HGSOC over non-HGSOC. Compared to stage I disease, stage III disease was associated with HGSOC. Gradient boosting machine and extreme gradient boosting machine showed the highest accuracy in distinguishing between the histological findings of HGSOC versus non-HGSOC and between the five histological types of EOC. In conclusion, ADCmean, disease stage at diagnosis, and CA 19-9 level were significant factors for differentiating between EOC histological types.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3