Application-Driven Material Design of Printable Strain Hardening Cementitious Composites (SHCC)

Author:

Ivaniuk EgorORCID,Ivanova IrinaORCID,Sokolov Dmitrii,Tošić ZlataORCID,Eichenauer Martin Friedrich,Lordick DanielORCID,Mechtcherine ViktorORCID

Abstract

The creation of concrete shells from customized prefabricated modules is a novel approach that facilitates the construction of free-form surfaces considerably. In the framework of the Adaptive Concrete Diamond Construction (ACDC) project at TU Dresden, a material for 3D printing of the outer contours of such modules has been developed based on the principles of Strain Hardening Cementitious Composite (SHCC). In addition to its high ductility, the required material must also be suitable for 3D printing while enabling the achievement of high geometric accuracy in the manufacture of the modules. To gain the required performance, cellulose ether and starch ether were used specifically to extend the open time, for a longer period of maintaining initial workability, as well as for enhancing shape stability and surface quality. An extensive experimental program was carried out to evaluate the outcomes of the material modifications, including flow table tests, water retention tests, and several specific tests to determine the adhesiveness of the fresh SHCC. For hardened SHCC, surface roughness was assessed using a laser 3D scanner in addition to testing its mechanical properties.

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

1. An Overview of Historical and Contemporary Concrete Shells, Their Construction and Factors in Their General Disappearance

2. Design and erection of prefabricated shells;Gluckovski,1966

3. Candela Exhibition to Explore Intersection of Art and Engineering https://www.princeton.edu/news/2008/10/06/candela-exhibition-explore-intersection-art-and-engineering

4. Global Alliance for Buildings and Construction, International Energy Agency and the United Nations Environment Programme (2019): 2019 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector,2019

5. Design process for prototype concrete shells using a hybrid cable-net and fabric formwork

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3