A Simplified Ductile Fracture Model for Predicting Ultra-Low Cycle Fatigue of Structural Steels

Author:

Yu Mingming,Xie XuORCID,Li Shuailing

Abstract

Under strong earthquakes, steel structures are prone to undergoing ultra-low cycle fatigue (ULCF) fracture after sustaining cyclic large-strain loading, leading to severe earthquake-induced damage. Thus, establishing a prediction method for ULCF plays a significant role in the seismic design of steel structures. However, a simple and feasible model for predicting the ULCF life of steel structures has not been recognized yet. Among existing models, the ductile fracture model based on ductility capacity consumption has the advantage of strong adaptability, while the loading history effect in the damage process can also be considered. Nevertheless, such models have too many parameters and are inconvenient for calibration and application. To this end, focusing on the prediction methods for ULCF damage in steel structures, with the fragile parts being in moderate and high stress triaxiality, this paper proposes a simplified uncoupled prediction model that considers the effect of stress triaxiality on damage and introduces a new historical-effect related variable function reducing the calibration work of model parameters. Finally, cyclic loading test results of circular notched specimens verify that the proposed model has the advantages of a small dispersion of parameters for calibration, being handy for application, and possessing reliable results, providing a prediction method for ULCF damage of structural steels.

Funder

Research on seismic design method of steel bridge considering local damage effect under strong earthquake

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3