Abstract
Ti6Al4V alloy has been widely used in many fields, such as aerospace and medicine, due to its excellent biocompatibility and mechanical properties. Most high-performance components made of Ti6Al4V alloy usually need to be polished to produce their specific functional requirements. However, due to the material properties of Ti6Al4V, its polishing process still requires significant development. Therefore, this study aimed to investigate the performance of polishing Ti6Al4V by using tools with different rigidities. Two kinds of bonnet tool were used, namely a pure rubber (PR) bonnet and a semirigid (SR) bonnet. The characterization of material removal and surface integrity after polishing was conducted through a series of experiments on a 6-DOF robotic polishing device. The results demonstrate that both bonnet tools successfully produce nanometric level surface roughness. Moreover, the material removal rate of the SR bonnet tool is significantly higher than that of the PR bonnet, which is consistent with the material removal characteristics of glass polishing in previous research. In addition, the presented analysis on key polishing parameters and surface integrity lays the theoretical foundation for the polishing process of titanium alloy in different application fields.
Funder
National Science Foundation of China
Natural Science Foundation of Fujian Province, China
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献