Surface Discharges Performance of ETFE- and PTFE-Insulated Wires for Aircraft Applications

Author:

Riba Jordi-RogerORCID,Moreno-Eguilaz ManuelORCID,Ibrayemov TamerlanORCID,Boizieau MaxenceORCID

Abstract

Compared to their predecessors, the next generations of aircrafts will be more electrified, require more electrical power and operate at higher voltage levels to meet strict weight and volume constraints. The combined effect of low-pressure environments, increased voltage levels and compact designs intensifies the risks of premature insulation degradation due to electrical discharge activity. This paper studies the resistance to surface discharges of PTFE (polytetrafluoroethylene) and ETFE (ethylene tetrafluoroethylene), two insulation materials widely used in today’s aircraft wiring systems due to their outstanding properties, such as a wide temperature operation range and a high dielectric strength. The study is carried out in a low-pressure chamber, which was pressurized within the pressure range of 10–100 kPa that includes most aircraft applications. There is a compelling need for experimental data to assess the resistance of insulation materials to surface discharges at a very early stage as a function of the environmental pressure. Data on resistance to surface discharges in low-pressure environments for aeronautical applications are lacking, while most standards for insulation systems are based on tests under standard pressure conditions. The results provided in this work can be useful to design wiring systems for future more electric aircrafts, as well as to design fault detection systems for an early detection and identification of faults related to surface discharges. Therefore, the data and analysis included in this paper could be of great interest to design and develop insulation systems for wiring systems and standard assessment methods, as well as to design fault detection strategies for the early detection and identification of surface discharges for future generations of more electric aircrafts.

Funder

Government of Catalonia

Ministerio de Ciencia e Innovación de España

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3