Accuracy Verification of a 2D Adaptive Mesh Refinement Method by the Benchmarks of Lid-Driven Cavity Flows with an Arbitrary Number of Refinements

Author:

Lal Rajnesh1ORCID,Li Zhenquan2ORCID,Li Miao3ORCID

Affiliation:

1. School of Mathematical and Computing Sciences, Fiji National University, Lautoka P.O. Box 5529, Fiji

2. School of Computing, Mathematics and Engineering, Charles Sturt University, Thurgoona, NSW 2640, Australia

3. School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia

Abstract

The lid-driven cavity flow problem stands as a widely recognized benchmark in fluid dynamics, serving to validate CFD algorithms. Despite its geometric simplicity, the lid-driven cavity flow problem exhibits a complex flow regime primarily characterized by the formation of vortices at the centre and corners of the square domain. This study evaluates the accuracy of the 2D velocity-driven adaptive mesh refinement (2D VDAMR) method in estimating vortex centres in a steady incompressible flow within a 2D square cavity. The VDAMR algorithm allows for an arbitrary number of finite mesh refinements. Increasing the number of successive mesh refinements results in more accurate outcomes. In this paper, the initial coarse uniform grid mesh was refined ten times for Reynolds numbers 100≤Re≤7500. Results show that VDAMR accurately identifies vortex centres, with its findings closely aligning with benchmark data from six literature sources.

Publisher

MDPI AG

Reference28 articles.

1. Slotnick, J.P., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and Mavriplis, D.J. (2013). CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences, NASA.

2. Stein, E., Borst, R., and Hughes, T.J.R. (2017). Mesh generation and mesh adaptivity: Theory and techniques. Encyclopedia of Computational Mechanics, John Wiley & Sons, Ltd.

3. Plewa, T., Linde, T.J., and Weirs, V.G. (2003, January 3–5). Adaptive mesh refinement-theory and applications. Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Chicago, IL, USA.

4. Adaptive mesh refinement for hyperbolic partial differential equations;Berger;J. Comput. Phys.,1984

5. Three-dimensional adaptive mesh refinement for hyperbolic conservation laws;Bell;SIAM J. Sci. Comput.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3