A Spatially Fair and Low Conflict Medium Access Control Protocol for Underwater Acoustic Networks

Author:

Zheng Maochun123ORCID,Ge Wei124,Han Xiao123ORCID,Yin Jingwei123

Affiliation:

1. National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China

2. Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and Information Technology, Harbin 150001, China

3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China

4. Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China

Abstract

The large propagation delay in underwater acoustic networks results in spatial and temporal uncertainty between communication links. This uncertainty, in turn, leads to problems with spatial unfairness and packet collision in media access control (MAC) solutions. To address these issues, this research paper proposes a spatially fair and low-conflict media access control (SFLC-MAC) protocol. Within the protocol, a contention window spatial fairness adjustment strategy is designed, including random and fair states. Nodes autonomously adjust their contention states based on the perceived network information. Nodes in the fair state increase their listening time to ensure that nodes in the random state can successfully access the channel, thereby overcoming the fairness issues in channel access. A method based on postponing data packet transmission is proposed to avoid collisions between data packets and neighbors’ control packets. By scrutinizing the spatio-temporal constraints pertinent to these conflicts, the exact duration of the delay required for this method is ascertained. Simulation results demonstrate that SFLC-MAC effectively improves network throughput, reduces end-to-end delay, decreases network energy consumption, and enhances channel access fairness among nodes.

Funder

the national science foundation for distinguished young scholars

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3