Improving the Accuracy of Seafloor Topography Inversion Based on a Variable Density and Topography Constraint Combined Modification Method

Author:

Sun Yongjin12,Zheng Wei1,Li Zhaowei3,Zhou Zhiquan4,Zhou Xiaocong5

Affiliation:

1. China Academy of Aerospace Science and Innovation, China Aerospace Science and Technology Corporation, Beijing 100176, China

2. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

3. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China

4. School of Information Science and Engineering, Harbin Institute of Technology, Weihai 264209, China

5. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

The use of satellite altimetry to recover marine gravity anomalies allows for the rapid acquisition of seafloor topography on a wide range of regional scales. Currently, the commonly used approaches for inverting seafloor topography have been focused on the linear correlation between gravity anomalies and seafloor topography and have disregarded the effect of density contrast between the crust and seawater on depth. Therefore, we proposed a variable density and topography constraint combined modification (VDTCCM) method by deriving Parker’s formula and the Bouguer plate formula by introducing variable density and topography factors. This method can effectively recover topography-related nonlinear terms of gravity anomalies. Subsequently, the seafloor topography of the South China Sea was estimated by applying the VDTCCM method and was defined as Seafloor topography one (ST1), and following, the accuracy was evaluated using shipborne sounding data (SSD). The results indicate that the ST1 model’s SSD-checked accuracy is 23.34% and 39.42% higher than the common international models of ETOPO1 and DTU10, respectively. Moreover, the ST1 model has advantages in mapping rugged areas, showing more detailed topographical features. Consequently, the VDTCCM method can provide beneficial references for the construction of seafloor topography models on a large regional scale using gravity anomalies recovered from satellite altimetry.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration

Key Project of Science and Technology Commission of the Central Military Commission

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3