Affiliation:
1. Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le V. Tecchio, 80, 80125 Naples, Italy
Abstract
Fibre-reinforced plastic (FRP) materials are attracting growing interest because of their high specific mechanical properties. These characteristics, in addition to a high level of tailorability and design of freedom, make them attractive for marine, aerospace, automotive, sports and energy applications. However, the large use of this class of material dramatically increases the amount of waste that derives from end-of-life products and offcuts generated during the manufacturing processes. In this context, especially when thermosetting matrices are considered, the need to deeply study the recycling process of FRPs is an open topic both in academic and industrial research. This review aims to present the current state of the art of the most affirmed recycling technologies used for polymeric composites commonly used in industrial applications, such as carbon and glass FRPs. Each recycling method (i.e., chemical, thermal and mechanical) was analysed in terms of technological solutions and process parameters required for matrix dissolution and fibre recovery, showing their advantages, drawbacks, applications and properties of the recycled composites. Therefore, the aim of this review is to offer an extensive overview of the recycling process of polymeric composite materials, which is useful to academic and industrial researchers that work on this topic.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献