Integrated Model for Wave-Induced Oscillatory and Residual Soil Response in a Poro-Elastic Seabed: Partially Dynamic Model

Author:

Wan Zhipeng1ORCID,Cui Lin1ORCID,Jeng Dong-Sheng12ORCID

Affiliation:

1. College of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

2. School of Engineering & Built Environment, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia

Abstract

The evaluation of wave-induced residual pore pressure in a porous seabed and associated seabed liquefaction is essential for designing marine infrastructure foundations. The strength and stiffness of the seabed could be weakened due to the build-up of pore pressures under cyclic wave action, further leading to residual liquefaction. Existing models for residual liquefaction are limited to the quasi-static uncoupled approaches, which do not account for the effect of oscillatory pore pressure on the accumulative pore pressure acceleration of solid particles, despite the mutual influence of these two mechanisms. To overcome these limitations, this paper proposes a new model for residual soil response with u−p approximation (partial dynamic model) that couples oscillatory and residual mechanisms. The proposed model is validated through wave flume tests and centrifuge tests. Based on the coupling model, a new criterion of liquefaction integrating both oscillatory and residual mechanisms is also proposed. Numerical examples demonstrate that the coupling effect significantly affects the wave-induced seabed liquefaction potential. Furthermore, a new parameter (Ω) representing the ratio of oscillatory and residual pore pressure is introduced to clarify which mechanism dominates the pore pressure development.

Funder

Engineering Research Center of Concrete Technology under Marine Environment, Ministry of Education

National Natural Science Foundation of China

Shandong Provincial Overseas High-Level Talent Workstation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3