Theoretical Study of Supercavitation Bubble Formation Based on Gillespie’s Algorithm

Author:

Arad Ludar Lotan1,Gany Alon1ORCID

Affiliation:

1. Faculty of Aerospace Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract

Understanding the creation and development of a supercavitation bubble is essential for the design of supercavitational underwater vehicles and applications. The pressure field of the supercavitation bubble is one of the most significant factors in these processes, and it should be taken into account in the analysis. The underwater vessel is surrounded by a supercavitation bubble which is, in fact, an inhomogeneous fluid containing cavities (also described as microbubbles). The distribution of the cavities in the supercavitation volume dictates the pressure field and thus determines the stresses and forces that act on the vessel and affect its motion and stability. In this research, we suggest a new approach to studying the bubbles’ formation and learning about the cavities’ distribution in the low-pressure volume that envelops the underwater vehicle. We used Logvinovich’s principle to describe a two-dimensional ring of fluid that is created at the front edge of the supercavitation body and moves downstream along the vessel. To describe the distribution of the cavities we used Gillespie’s algorithm, which is usually used to describe biological and chemical systems. The algorithm succeeded in describing the random movement of the cavities in the cross-section under various conditions and also in describing their distribution and effects on the macroscopic system. A few factors of the physical characteristics of the fluid and the flow conditions were examined (the initial bubble supply, and the rate coefficients of creation and collapse). The results led to the conclusion that with an examination of those factors and using Gillespie’s algorithm, predictions of the distribution and thus the development of supercavitation could be achieved. The main finding of the analysis was that asymmetric development of the bubbles took place, in spite of the symmetry of the physical problem, as observed in high-resolution experiments.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference37 articles.

1. Brennen, C.E. (2014). Cavitation and Bubble Dynamics, Cambridge University Press.

2. Brennen, C.E. (2005). Fundamentals of Multiphase Flow, Cambridge University Press.

3. Franc, J.P., and Michel, J.M. (2004). Fundamentals of Cavitation, Kluwer Academic Publishers Dordrecht.

4. Savchenko, Y. (2020, June 23). Supercavitation-Problems and Perspectives. Available online: https://resolver.caltech.edu/CAV2001:lecture.003.

5. On methods of calculating a shape of slender axisymmetric cavities;Logvinovich;Hydromechanics,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3