Structure and Productivity of the Phytoplankton Community in the Southwestern Kara Sea in Early Summer

Author:

Mosharov Sergey A.12ORCID,Druzhkova Elena I.3,Sazhin Andrey F.1,Khlebopashev Pavel V.1,Drozdova Anastasia N.1ORCID,Belyaev Nikolay A.1,Azovsky Andrey I.14ORCID

Affiliation:

1. Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia

2. Faculty of Power Engineering, Bauman Moscow State Technical University, 105005 Moscow, Russia

3. Murmansk Marine Biological Institute of Russian Academy of Sciences, 183010 Murmansk, Russia

4. Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia

Abstract

Knowledge of the features of the structure and productivity of the Arctic communities of marine planktonic algae is necessary to identify possible changes in the pelagic ecosystem functioning under the changing climate condition of the Kara Sea. This study shows that the species diversity, abundance of phytoplankton, and production activity of algae are at a maximum at the beginning of summer during a seasonal ice melting period. The studies were carried out in the southwestern Kara Sea and in the estuarine zone of the Ob and Yenisei rivers from 29 June to 15 July 2018. The concentrations of nutrients and dissolved organic carbon were determined. The optical properties of chromophoric dissolved organic matter, species composition, abundance and biomass of all size groups of phototrophic and heterotrophic phytoplankton, and parameters of primary production and potential photosynthetic capacity were considered. Statistical data analysis showed that the leading factors influencing changes in the abundance of phytoplankton and its productivity are the content of silicates and salinity. At the same time, the production potential of algae is realized as short-lived and small phytoplankton assemblages differed in number taxa and diversity, with an equally rapid decrease in photosynthetic activity. Such changes affect the Marine Zone to a greater extent and the Estuarine Zone to a lesser extent.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3