Effect of Hydrodynamic Condition on Adsorption of Sulfadiazine on Marine Sediments

Author:

Xu Wei12,Xu Jiaxin12,Song Jie12,Xiu Guangli12

Affiliation:

1. Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China

2. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

In the present study, the adsorption behavior of sulfadiazine (SDZ) on various sediments under different hydrodynamic conditions generated by a rocking shaker was investigated. Based on the dye mixing experiments, three regimes with different hydrodynamic characteristics, i.e., laminar, transition, and turbulent regimes, were identified. The hydrodynamic intensity was found to have a positive effect on the adsorption of SDZ, In general, the adsorption capacity followed the order of turbulent > transition > laminar > static. Compared to quartz sands, montmorillonite exhibited a narrower range of adsorption capacity under different hydrodynamic conditions, which implies it is less sensitive to the hydrodynamic conditions. For adsorption kinetics, sands fit the pseudo-first-order model, while montmorillonite fits the pseudo-second-order model. For adsorption thermodynamics, the Freundlich model showed a better correlation coefficient for all sediments. In addition, it was found that particle size could affect the antibiotic adsorption capacity, and the presence of salts inhibited the adsorption performance.

Funder

Shanghai Sailing Program

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3