Effect of Salinity and Temperature on the Dispersion of Spilled Oil in the Presence of Microplastics

Author:

Gao Huan1,Qi Zhixin1,Yu Xinping1,An Yaya1,Liu Ziyue1,Yang Miao1,Xiong Deqi1

Affiliation:

1. College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China

Abstract

Both oil spill and microplastics (MPs) are major issues in marine environments. After a spill, the oil film may disperse into the water column as droplets under the function of sea waves. The oil dispersion may be affected due to the attachment of oil to MPs. In this paper, the impacts of salinity and temperature on the dispersion of spilled oil in the presence of MPs were individually studied by batch conical flask oscillation experiments. The results indicated that the rise in salinity or temperature displayed a more significant effect on promoting, rather than inhibiting, oil dispersion with MPs. When the salinity rose from 15% to 35%, the oil dispersion efficiency (ODE) with the 13 μm polyethylene (PE) and polystyrene (PS) MPs was increased by 10.4% and 12.9%, respectively; when the temperature rose from 10 °C to 25 °C, the corresponding ODE was increased by 15.6% and 12.7%, respectively. In addition, the volumetric mean diameter (VMD) of the dispersed oil droplets decreased with an increase in salinity or temperature. Furthermore, the 13 μm MPs showed a higher impact on the oil dispersion than 106 μm of MPs, and the ODE with PE MPs was greater than that with PS MPs. The findings of this study expanded the understanding of the migration of spilled oil in seawater in the presence of MPs and may further improve the capability of predicting the impact of oil spills by marine environment managers.

Funder

National Natural Science Foundation of China

Liaoning Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3