An Overall Deformation Monitoring Method of Structure Based on Tracking Deformation Contour

Author:

Chu Xi,Zhou Zhixiang,Deng Guojun,Duan Xin,Jiang Xin

Abstract

In structural deformation monitoring, traditional methods are mainly based on the deformation data measured at several individual points. As a result, only the discrete deformation, not the overall one, can be obtained, which hinders the researcher from a better and all-round understanding on the structural behavior. At the same time, the surrounding area around the measuring structure is usually complicated, which notably escalates the difficulty in accessing the deformation data. In dealing with the said issues, a digital image-based method is proposed for the overall structural deformation monitoring, utilizing the image perspective transformation and edge detection. Due to the limitation on camera sites, the lens is usually not orthogonal to the measuring structure. As a result, the obtained image cannot be used to extract the deformation data directly. Thus, the perspective transformation algorithm is used to obtain the orthogonal projection image of the test beam under the condition of inclined photography, which enables the direct extraction of deformation data from the original image. Meanwhile, edge detection operators are used to detect the edge of structure’s orthogonal projection image, to further characterize the key feature of structural deformation. Using the operator, the complete deformation data of structural edge are obtained by locating and calibrating the edge pixels. Based on the above, a series of load tests has been carried out using a steel–concrete composite beam to validate the proposed method, with the implementation of traditional dial deformation gauges. It has been found that the extracted edge lines have an obvious sawtooth effect due to the illumination environment. The sawtooth effect makes the extracted edge lines slightly fluctuate around the actual contour of the structure. On this end, the fitting method is applied to minimize the fluctuation and obtain the linear approximation of the actual deflection curve. The deformation data obtained by the proposed method have been compared with the one measured by the dial meters, indicating that the measurement error of the proposed method is less than 5%. However, since the overall deformation data are continuously measured by the proposed method, it can better reflect the overall deformation of the structure, and moreover the structural health state, when compared with the traditional “point” measurements.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Experimental Study on Deflection Monitoring Scheme of Steep Gradient and High Drop Bridge;Liu;J. Highw. Transp. Res. Dev.,2015

2. Study on Application of Close-Range Photogrammetric 3D Reconstruction in Structural Tests;Jiang;Res. Explor. Lab.,2016

3. Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs;Heng;Steel Compos. Struct.,2020

4. Close-Range Photogrammetry and 3D Imaging, 2nd Edition;Luhmann;Photogramm. Eng. Remote Sens.,2015

5. A comparison between photogrammetry and laser scanning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3