In Vitro and In Vivo Testing of Zinc as a Biodegradable Material for Stents Fabricated by Photo-Chemical Etching

Author:

Kandala Bala Subramanya Pavan Kumar,Zhang Guangqi,Hopkins Tracy M.,An Xiaoxian,Pixley Sarah K.ORCID,Shanov Vesselin

Abstract

There is an increasing interest in biodegradable metal implants made from magnesium (Mg), iron (Fe), zinc (Zn) and their alloys because they are well tolerated in vivo and have mechanical properties that approach those of non-degradable metals. In particular, Zn and its alloys show the potential to be the next generation of biodegradable materials for medical implants. However, Zn has not been as well-studied as Mg, especially for stent applications. Manufacturing stents by laser cutting has become an industry standard. Nevertheless, the use of this approach with Zn faces some challenges, such as generating thermal stress, dross sticking on the device, surface oxidation, and the need for expensive thin-walled Zn tubing and post-treatment. All of these challenges motivated us to employ photo-chemical etching for fabricating different designs of Zn (99.95% pure) stents. The stents were constructed with different strut patterns, made by photo-chemical etching, and mechanically tested to evaluate radial forces. Stents with rhombus design patterns showed a promising 0.167N/mm radial force, which was comparable to Mg-based stents. In vitro studies were conducted with uncoated Zn stents as control and Parylene C-coated Zn stents to determine corrosion rates. The Parylene C coating reduced the corrosion rate by 50% compared to uncoated stents. In vivo studies were carried out by implanting photo-chemically etched, uncoated Zn stent segments subcutaneously in a C57BL/6 mice model. Histological analyses provided favorable data about the surrounding tissue status, as well as nerve and blood vessel responses near the implant, providing insights into the in vivo degradation of the metal struts. All of these experiments confirmed that Zn has the potential for use in biodegradable stent applications.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3