Abstract
The computational analysis of facial expressions is an emerging research topic that could overcome the limitations of human perception and get quick and objective outcomes in the assessment of neurodevelopmental disorders (e.g., Autism Spectrum Disorders, ASD). Unfortunately, there have been only a few attempts to quantify facial expression production and most of the scientific literature aims at the easier task of recognizing if either a facial expression is present or not. Some attempts to face this challenging task exist but they do not provide a comprehensive study based on the comparison between human and automatic outcomes in quantifying children’s ability to produce basic emotions. Furthermore, these works do not exploit the latest solutions in computer vision and machine learning. Finally, they generally focus only on a homogeneous (in terms of cognitive capabilities) group of individuals. To fill this gap, in this paper some advanced computer vision and machine learning strategies are integrated into a framework aimed to computationally analyze how both ASD and typically developing children produce facial expressions. The framework locates and tracks a number of landmarks (virtual electromyography sensors) with the aim of monitoring facial muscle movements involved in facial expression production. The output of these virtual sensors is then fused to model the individual ability to produce facial expressions. Gathered computational outcomes have been correlated with the evaluation provided by psychologists and evidence has been given that shows how the proposed framework could be effectively exploited to deeply analyze the emotional competence of ASD children to produce facial expressions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献