Abstract
African swine fever virus (ASFV) causes hemorrhagic fever with mortality rates of up to 100% in domestic pigs. Currently, there are no commercial vaccines for the disease. Only some live-attenuated viruses have been able to protect pigs from ASFV infection. The immune mechanisms involved in the protection are unclear. Immune sera can neutralize ASFV but incompletely. The mechanisms involved are not fully understood. Currently, there is no standardized protocol for ASFV neutralization assays. In this study, a flow cytometry-based ASFV neutralization assay was developed and tested in pig adherent PBMC using a virulent ASFV containing a fluorescent protein gene as a substrate for neutralization. As with previous studies, the percentage of infected macrophages was approximately five time higher than that of infected monocytes, and nearly all infected cells displayed no staining with anti-CD16 antibodies. Sera from naïve pigs and pigs immunized with a live-attenuated ASFV and fully protected against parental virus were used in the assay. The sera displayed incomplete neutralization with MOI-dependent neutralizing efficacies. Extracellular, but not intracellular, virions suspended in naïve serum were more infectious than those in the culture medium, as reported for some enveloped viruses, suggesting a novel mechanism of ASFV infection in macrophages. Both the intracellular and extracellular virions could not be completely neutralized.
Funder
United States Department of Homeland Security
United States Department of Agriculture
United States Department of Energy
Subject
Virology,Infectious Diseases
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献