Author:
Pauzi Ahmad Afiq,Ghazali Mariyam Jameelah,W. Zamri Wan Fathul Hakim,Rajabi Armin
Abstract
In the gas-turbine research field, superalloys are some of the most widely used materials as they offer excellent strength, particularly at extreme temperatures. Vital components such as combustion liners, transition pieces, blades, and vanes, which are often severely affected by wear, have been identified. These critical components are exposed to very high temperatures (ranging from 570 to 1300 °C) in hot-gas-path systems and are generally subjected to heavy repair processes for maintenance works. Major degradation such as abrasive wear and fretting fatigue wear are predominant mechanisms in combustion liners and transition pieces during start–stop or peaking operation, resulting in high cost if inadequately protected. Another type of wear-like erosion is also prominent in turbine blades and vanes. Nimonic 263, Hastelloy X, and GTD 111 are examples of superalloys used in the gas-turbine industry. This review covers the development of hardface coatings used to protect the surfaces of components from wear and erosion. The application of hardface coatings helps reduce friction and wear, which can increase the lifespan of materials. Moreover, chromium carbide and Stellite 6 hardface coatings are widely used for hot-section components in gas turbines because they offer excellent resistance against wear and erosion. The effectiveness of these coatings to mitigate wear and increase the performance is further investigated. We also discuss in detail the current developments in combining these coating with other hard particles to improve wear resistance. The principles of this coating development can be extended to other high-temperature applications in the power-generation industry.
Subject
General Materials Science,Metals and Alloys
Reference93 articles.
1. Performance Analysis and Economic Effects of Maintenance and Hot Gas Path Inspection of a Combined Cycle Power Plant;Calindro,2015
2. Major Process Equipment Maintenance and Repair;Bloch,1997
3. Advanced Materials used for different components of Gas Turbine;Bohidar;Int. J. Sci. Res. Manag.,2013
4. Advanced Materials for Land Based Gas Turbines
5. Gas Turbine Working Principles;Zohuri,2015
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献