Wear Characteristics of Superalloy and Hardface Coatings in Gas Turbine Applications–A Review

Author:

Pauzi Ahmad Afiq,Ghazali Mariyam Jameelah,W. Zamri Wan Fathul Hakim,Rajabi Armin

Abstract

In the gas-turbine research field, superalloys are some of the most widely used materials as they offer excellent strength, particularly at extreme temperatures. Vital components such as combustion liners, transition pieces, blades, and vanes, which are often severely affected by wear, have been identified. These critical components are exposed to very high temperatures (ranging from 570 to 1300 °C) in hot-gas-path systems and are generally subjected to heavy repair processes for maintenance works. Major degradation such as abrasive wear and fretting fatigue wear are predominant mechanisms in combustion liners and transition pieces during start–stop or peaking operation, resulting in high cost if inadequately protected. Another type of wear-like erosion is also prominent in turbine blades and vanes. Nimonic 263, Hastelloy X, and GTD 111 are examples of superalloys used in the gas-turbine industry. This review covers the development of hardface coatings used to protect the surfaces of components from wear and erosion. The application of hardface coatings helps reduce friction and wear, which can increase the lifespan of materials. Moreover, chromium carbide and Stellite 6 hardface coatings are widely used for hot-section components in gas turbines because they offer excellent resistance against wear and erosion. The effectiveness of these coatings to mitigate wear and increase the performance is further investigated. We also discuss in detail the current developments in combining these coating with other hard particles to improve wear resistance. The principles of this coating development can be extended to other high-temperature applications in the power-generation industry.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference93 articles.

1. Performance Analysis and Economic Effects of Maintenance and Hot Gas Path Inspection of a Combined Cycle Power Plant;Calindro,2015

2. Major Process Equipment Maintenance and Repair;Bloch,1997

3. Advanced Materials used for different components of Gas Turbine;Bohidar;Int. J. Sci. Res. Manag.,2013

4. Advanced Materials for Land Based Gas Turbines

5. Gas Turbine Working Principles;Zohuri,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3