Process Development for a Superplastic Hot Tube Gas Forming Process of Titanium (Ti-3Al-2.5V) Hollow Profiles

Author:

Trân Ricardo,Reuther Franz,Winter SvenORCID,Psyk VerenaORCID

Abstract

Tube forming technologies based on internal forming pressures, such as hydroforming or hot tube gas forming, are state of the art to manufacture complex closed profile geometries. However, materials with excellent specific strengths and chemical properties, such as titanium alloys, are often challenging to shape due to their limited formability. In this study, the titanium alloy Ti-3Al-2.5V was processed by superplastic hot tube gas forming to manufacture a helically shaped flex tube. The forming process was investigated in terms of process simulation, forming tool technology and process window for the manufacturing of good parts. Within a simulation study, a strain rate optimized forming pressure–time curve was defined. With the newly developed tool design, forming temperatures up to 900 °C and internal forming pressures up to 7 MPa were tested. A process window to manufacture good parts without necking or wrinkling has been successfully identified. The experiment data showed good agreement with the numerical simulations. The detailed study of the process contributes to an in-depth understanding of the superplastic forming of Ti-3Al-2.5V during hot tube gas forming. Furthermore, the study shows the high potential of superplastic hot tube gas forming of titanium alloys for the manufacturing of helical flex tubes and bellows.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference41 articles.

1. On the characteristics of titanium alloys for the aircraft applications

2. Vortragstexte eines Fortbildungsseminars der Deutschen Gesellschaft für Materialkunde e.V.,2010

3. Titanium Alloy Guidehttps://link.springer.com/content/pdf/10.1007/s00170-017-0642-1.pdf

4. Study on the forming parameters of the metal bellows

5. Evaluation of effective parameters in metal bellows forming process

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3