On Additive Manufactured AlSi10Mg to Wrought AA6060-T6: Characterisation of Optimal- and High-Energy Magnetic Pulse Welding Conditions

Author:

Nahmany Moshe,Shribman Victor,Levi Shlomo,Ashkenazi DanaORCID,Stern Adin

Abstract

This novel research aims to examine the macro and microstructural bonding region development during magnetic pulse welding (MPW) of dissimilar additive manufactured (AM) laser powder-bed fusion (L-PBF) AlSi10Mg rod and AA6060-T6 wrought tube, using both optimal- and high-energy welding conditions. For that purpose, various joint characterisation methods were applied. It is demonstrated that high-quality hermetic welds are achievable with adjusted MPW process parameters. The macroscale analysis has shown that the joint interfaces are deformed to a waveform shape; the interface is starting relatively planar, with waves forming and growing in the welding direction. The observed thickening of the flyer’s wall after welding is the result of its diametral inward deformation, taking place during the process. A slight increase in microhardness was adjacent to the faying interfaces; a higher increase was measured on the AlSi10Mg material side, while a smaller one was observed on the AA6060 side. Along the wavy interfaces, resolidified “pockets” of material or occasionally discontinuous short layers exhibiting different morphologies, were detected. The jet residues are typically located towards the end of the weld, confirming a temperature rise that exceeds the melting temperature of both alloys. Far from the weld zone, extremely thin-film deposits were clearly observed on the inner flyer surfaces. The formation of isolated Si particles and thin-film deposits may point out that the local increase in temperatures leads to melting or even evaporation vaporisation of superficial layers from the colliding parts. It is worth noting that this type of jet residue was discovered for the first time in the present research. The current research work is expected to provide an understanding of weld formation mechanisms of additively manufactured parts to conventional wrought parts conforming to existing wrought/wrought weld knowledge.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3