Effect of Processing Atmosphere and Secondary Operations on the Mechanical Properties of Additive Manufactured AISI 316L Stainless Steel by Plasma Metal Deposition

Author:

Arévalo CristinaORCID,Ariza EnriqueORCID,Pérez-Soriano Eva MariaORCID,Kitzmantel Michael,Neubauer Erich,Montealegre-Meléndez IsabelORCID

Abstract

Plasma metal deposition (PMD) is an interesting additive technique whereby diverse materials can be employed to produce end parts with complex geometries. This study investigates not only the effects of the manufacturing conditions on the final properties of 316L stainless steel specimens by PMD, but it also affords an opportunity to study how secondary treatments could modify these properties. The tested processing condition was the atmosphere, either air or argon, with the other parameters having previously been optimized. Furthermore, two standard thermal treatments were conducted with the intention of broadening knowledge regarding how these secondary operations could cause changes in the microstructure and properties of 316L parts. To better appreciate and understand the variation of conditions affecting the behavior properties, a thorough characterization of the specimens was carried out. The results indicate that the presence of vermicular ferrite (δ) varied slightly as a consequence of the processing conditions, since it was less prone to appear in specimens manufactured in argon than in air. In this respect, their mechanical properties suffered variations; the higher the ferrite (δ) content, the higher the mechanical properties measured. The degree of influence of the thermal treatment was similar regardless of the processing conditions, which affected the properties based on the heating temperature.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3